C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Metric Space

	Subject	Code: 4SC05MSC1	Branch: B.Sc. (Mathema	tics)		
	Semeste	:: 5 Date: 27/04/2016	Time: 02:30 To 05:30	Marks: 70		
	(1) (2) (3) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	ons: Use of Programmable calculator & any nstructions written on main answer bo Draw neat diagrams and figures (if nec Assume suitable data if needed.	other electronic instrument ok are strictly to be obeyed essary) at right places.	is prohibited.		
Q-1		Attempt the following questions:			(14)	
	a) Define: Metric Space.					
	b)	b) Find int A, ext A, fr A, bd A for the set $X = N$, $A = \{1, 2, 3, 4, 5, 6\}$.				
	c) Let A and B be any two subsets of a metric space (X, d) , then prove that $A \subseteq B$ implies int $A \subseteq int B$.					
	d)	Define: Isometry.			(01)	
	e)	Define: Complete metric space.			(01)	
	f)	Define: Closure of a set.			(01)	
	g)	Is [5, 6] compact?			(01)	
	h)	Define: Cauchy sequence in a metric	space.		(01)	
	i)	The set Q of rational numbers is clos or False?	ed. Determine, whether the	statement is True	(01)	
	j)	ϕ and X are open in any metric. Determine False?	ermine, whether the stateme	nt is True or	(01)	
	k)	Any closed interval with the usual m statement is True or False?	etric is compact. Determine	, whether the	(01)	
Atte	empt any f	our questions from Q-2 to Q-8				
Q-2		Attempt all questions			(14)	
	a)	Prove that the intersection of a finite	number of open sets is open	1.	(05)	
	b)	Let (X, d) be any metric space. Prove its complement in X is open.	e that a subset F of X is close	sed if and only if	(05)	
	c)	Let l_{∞} denote the set of all bounded the function d define by $d(\{x_n\}, \{y_n\})$	sequences $\{x_n\}$ of real num $y = \sup\{ x_n - y_n : n \in N\}$	bers. Show that $, \forall \{x_n\}, \{y_n\} \in$	(04)	

Q-3

l_{∞} is metric on l_{∞} . Attempt all questions

a) Let (X, d) be any metric space. Show that the function d_1 defined by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$ is a metric on X. (05)

(14)

Page 1 || 2

	b)	Let A and B be any two subsets of a metric space (X, d) . Then prove that	(05)
	c)	$I \cap A \cap B = A \cap B$, $I \cap A \cap B \subseteq A \cap B$. Prove that every closed subset of a compact metric space is compact	(04)
0-4	C)	Attemnt all questions	(04)
× ·	a)	Which of the following sets are open sets. Justify.	(05)
	•••	i) (-1.1) on R .	(02)
		$ii \} \{ (x, y) / x = y \} $ on \mathbb{R}^2 .	
		<i>iii</i>) $\{(x, y) / x^2 + y^2 < 1\}$ on R^2 .	
		iv) [0,1) on R.	
		v) (0,1) U (2,3).	
	b)	Show that the set $C[a, b]$ of all real-valued functions continuous on the interval	(05)
		[a, b] with the function d defined by $d(f, g) = \left(\int_a^b (f(x) - g(x))^2 dx\right)^{\overline{2}}$ is a	
		metric space.	
	c)	Prove that every closed sphere is a closed set.	(04)
Q-5		Attempt all questions	(14)
	a)	Let (X, d_1) and (Y, d_2) is metric spaces. Prove that $f: X \to Y$ is continuous if and	(05)
		only if $f(A) \subseteq f(A)$, for every $A \subseteq X$.	
	b)	Let (X, d) be a metric space then show that any disjoint pair of closed sets in X	(05)
		can be separated by disjoint open sets in X.	
	c)	Prove that the image of a Cauchy sequence under a uniformly continuous	(04)
0 (function is again a Cauchy sequence.	(1 1)
Q-6		Attempt all questions	(14)
	a)	State and prove Banach Fixed point theorem.	(07)
	b)	Prove that continuous image of a connected set is connected.	(05)
	C)	If $f(x) = x^2$, $0 \le x \le \frac{1}{3}$, then show that f is contracting mapping on $\left[0, \frac{1}{3}\right]$ with	(02)
~ -		the usual metric d.	(1 1)
Q- 7		Attempt all questions	(14)
	a)	Prove that every closed and bounded subset of the real line is compact.	(07)
	b)	Let (X, d) be a metric space, and A, B are subset of X, then prove that A is closed	(05)
		if and only if $A \supseteq Fr(A)$.	
0.0	C)	Define: Homeomorphism.	(02)
Q-8		Attempt all questions	(14)
	a)	Let (X, a_1) and (Y, a_2) is metric space and f is a function from X into . Then	(07)
		prove that f is continuous at $a \in X$ if and only if for every sequence $\{a_n\}$	
		converging to a, the sequence $\{f(a_n)\}$ should be converges to $f(a)$.	

b) Prove that continuous image of a compact set is compact. (07)

